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Abstract

A number of methods for using ensemble integrations of prediction models as an integral
part of data assimilation have appeared in the atmospheric and oceanic literature. In general, these
methods have been derived from the Kalman filter and have been known as ensemble Kalman fil-
ters. A more general class of methods that includes these ensemble Kalman filter methods is
derived starting from the nonlinear filtering problem. When working in a joint state / observation
space, many features of ensemble filtering algorithms become easier to derive and compare. The
ensemble filter methods derived here make a (local) least squares assumption about the relation
between the prior distributions of an observation variable and the model state variables. In this
context, the update procedure applied when a new observation becomes available can be
described in two parts. First, an update increment is computed for each prior ensemble estimate of
the observation variable by applying a scalar ensembile filter. Second, a linear regression of the
prior ensemble sample of each state variable on the observation variable is performed. This
regression computes update increments for each state variable ensemble member from the corre-
sponding observation variable increments. The regression can be applied globally or locally using
Gaussian kernel methods.

Several previously documented ensemble Kalman filter methods, the perturbed observa-
tion ensemble Kalman filter and ensemble adjustment (or ensemble square root) Kalman filter, are
developed in this context. Some new ensemble filters that extend beyond the Kalman filter context
are also discussed. The two part method provides a computationally efficient implementation of
ensemble filters and allows for more straightforward comparison of these methods since they dif-
fer only in the solution of a scalar filtering problem.

1. Introduction

Interest in data assimilation methods using ensemble integrations of prediction models is
growing rapidly in the atmospheric and oceanic communities. This is occurring because methods
for doing assimilation with ensembles are rapidly maturing, and because both prediction centers
and research groups are becoming increasingly interested in characterizing more information
about the probability distribution of the climate system than can be revealed by a single assimi-
lated state estimate.

Ensemble assimilation methods were originally developed as generalizations of the Kal-
man filter (Kalman and Bucy 1961, Courtier et al 1993). This led to a sequence of related methods
known as ensemble Kalman filters (Evensen 1994) which have been extended to increasingly gen-
eral assimilation problems (Houtekamer and Mitchell 1998). More recently, other variants, still
referred to as ensemble Kalman filters (Bishop et al 2001, Anderson 2001), have appeared in the
literature demonstrating improved assimilation error characteristics and/or decreased computa-
tional cost. Some of these new methods were developed directly from the probabilistic statement
of the nonlinear filtering problem, rather than by generalizing from the Kalman filter. Developing
filters in this context can lead to a more straightforward understanding of their capabilities for
those not intimately related with the intricacies of the Kalman filter.

Here, a framework is developed in which most ensemble Kalman filter methodologies
documented to date can be described while still supporting a more general class of ensemble fil-
ters. The derivation begins with the nonlinear filtering problem and applies a sequence of simpli-
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fying assumptions. The introduction of a joint state / observation space (Tarantola 1987) leads to
an ability to deal with observations related to the model state variables by non-linear functions. A
least squares assumption (equivalent to assuming a local Gaussian relation amongst the prior joint
state variables) has been made, sometimes indirectly, in many descriptions of ensemble Kalman
filters. Here, that assumption is made explicitly and a significant simplification in the description
of the algorithms results. Under the assumptions made here, the ensemble filter problem simpli-
fies to an application of a nonlinear filter to a scalar, followed by a sequence of linear regressions.
This simplification makes it easier to analyze the relative capabilities of a variety of ensemble fil-
ter implementations and can lead to reduced computational cost.

Section 2 derives this context for ensemble filtering and section 3 shows how several pre-
viously documented ensemble Kalman filters are related. Section 4 discusses details of methods
for doing scalar assimilation problems. Section 5 briefly discusses the need for limiting the impact
of observations on state variables while section 6 offers conclusions.

2. Ensemble Filtering

To simplify notation, this section only discusses what happens at a single time at which
observations become available. Discussion of how filter assimilations are advanced in time using
ensemble methods and prediction models can be found in Anderson (2001) (hereafter AO1),
Houtekamer and Mitchell (1998), and Jazwinski (1970). Basically, each ensemble member is inte-
grated forward in time independently using a forecast model between times at which observations
are available.

A. Joint state/observation space and Bayesian framework

The joint state/observation space (Tarantola 1987, A01) is defined by the joint space state
vector

z =[x, h(x)] =[x, ¥] 1)
wherex is the model state vectgr=h(x), referred to as observation variables, is the expected
value of the observations available at this time,zisda vector of length n + m where n is the
number of state variables and m is the number of observations available at this time. Observations
are assumed to be selected from a distribution with expected value gikér byd an associ-
ated observational error distribution.

Using Bayesian statistics as in Jazwinski(1970) and A01, the distribution of the posterior
(or updated) distributioa" = [xY, yY] can be computed from the prior distributia®,= [xP, yP], as

p(z") = p(y° | Z°)p(zP) / normalization (2)
wherey® is an m-vector of the observed values available at this time. In the ensemble methods
applied here, the normalization factor in the denominator is not used explicitly (Anderson and
Anderson 1999).

One implication of (2) is that subsets of observations with independent (observational

error) distributions can be assimilated sequentiallyyPdte composed of s subsets of observa-
tions,y’ = {y, Yo .-, Yo} , where the distribution of the observational errors for observations
in subset i is independent of the distribution for the observations in subsat#, jfor . Then
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p(y]2") = ] p(v7|2) . (3)
i=1

In particular, if the individual scalar observationw?n have mutually independent error distribu-

tions, they can be assimilated sequentially in any order without changing the result in (2). This
allows sequential assimilation with observational error distributions represented as Gaussians as
long as the observational error covariance matrix is diagonal. This was pointed out by Houteka-
mer and Mitchell (2001) in the ensemble Kalman filter context and used in AOL. Eq. (3) depends
only on the observing system and makes no assumptions about the prior joint state distribution or
how it is represented.

B. An ensemble method for the filtering problem

In ensemble methods for solving (2), information about the prior distribution of the state
variablesxP, is available as a sample of size N produced by N applications of a prediction model.
An ensemble sample of the prior observation vegthican be created by applying the forward

observation operatoln, to each ensemble samplex8f

Some Monte Carlo (ensemble) methods also have a weight, w, associated with each
ensemble member. The possibility of weighted ensembles is not discussed in detail here, but the
methods in this section are easily generalized to this case. Attempts to apply the most common
types of weighting / resampling Monte Carlo algorithms in high-dimensional spaces have faced
significant difficulties.

Observational error distributions of climate system observations are generally only poorly
known and are often specified as Gaussian with zero mean (known instrument bias is usually cor-
rected by removing the bias from the observation during a pre-processing step). Some observa-
tions have values restricted to certain ranges, for instance precipitation must be positive.
Redefining the observation variable as the log of the observation can lead to a Gaussian observa-
tional error distribution in this case (Tarantola 1987). Given Gaussian observational error distribu-
tions, observations can be decomposed into subsets where observational errors for observations in
each subset are correlated but observational errors in different subsets are uncorrelated. In other
words,R, the observational error covariance matrix, is block diagonal with each block being the
size of the number of observations in the corresponding observation subset. Error distributions for
the different subsets are independent, so the subsets can be assimilated sequentially in (2) in an
arbitrary order.

For many commonly assimilated observations, each scalar observation has an error distri-
bution that is independent of all others, allowing each scalar observation to be assimilated sequen-
tially (Houtekamer and Mitchell 2001). If the observational covariance matrix is not strictly
diagonal, a singular value decomposition (SVD) can be perform&d ©he prior joint state
ensembles can be projected onto the singular vectors and the assimilation can proceed using this
new basis, in whiclr’, the observational covariance matrix, is diagonal by definition. Upon com-
pletion of the assimilation computation, the updated state vectors can be projected back to the
original state space. Given the application of this SVD, a mechanism for sequential assimilation
of scalar observations implies no loss of generality for observations with arbitrary Gaussian error
distributions. In everything that follows, results are presented only for assimilation of a single sca-
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lar observation so that m = 1, with joint state space size k = n + m = n + 1. Allowing arbitrary
observational error distributions represented as a sum of Gaussians is a straightforward extension
to the methods described below.

C. Two step data assimilation procedure

Following AO1, define the joint state space forward operations operator for a single obser-
vation as the ordel x k linear operatoH =0, 0, ..., 0, 1]. The expected value of the observation
can be calculated by applyihgto the joint state vectoz, which is equivalent to applying the
possibly non-linear operatdrto x. The conversion of the possibly non-lindato the lineaHH is
a primary motivation for applying ensembile filters in the joint state space.

The updated probability for thmarginal distribution of the observation joint state vari-
able, y, can be formed from eq. (2) with the simple form

p,(v") = (YY" py(y")/ (norm). (4)
where the subscript on the probability densities indicates a marginal probability on the observa-
tion variable, y. The one dimensional problem for this marginal distribution can be solved by a
variety of methods, some of which are discussed in sections 3 and 4. Note that (4) does not
depend on any of the model state variables.

This suggests a partitioning of the assimilation of an observation into two parts. The first

determines updated ensemble members for the observation variable y given the obsétvation, y
To update the ensemble sample Bfgn incremently;, is computed for each ensemble member,

yi = y?+Ay.,i=1, .., Nwhere N is the ensemble size.
Given increments for the observation variable, the second step computes corresponding

increments for each ensemble sample of each state vaed)|dj indexes the ensemble member

and j =1, ..., kindexes which joint state variable throughout this report). This requires assump-
tions about the prior relationship between the joint state variables. Although reasonable alterna-
tives exist (Tarantola 1987), the assumption used here is that the prior distribution is Gaussian (or
a sum of Gaussians which allows generality). This is equivalent to assuming that a least squares fit
(local least squares fit) to the prior ensemble members summarizes the relationship between the
joint state variables.

Figure 1 depicts the simplest example in which there is only a single state variable, x. The
observation variable, y, is related to x by the operator h which is nonlinear in the figure. Incre-
ments for each ensemble sample of y have been computed. The corresponding increments for x
are then computed by a global least squares fit (linear regression) so that

o

Ax, = Ay . (5)
Oyy

The change in the ith ensemble sample of the state variable due to observation variable y is equal

to the prior covariance of x with y,  divided by the prior variance of g, , times the change in
the ith ensemble sample of the observation variable. This is just a statistical linearization and
inversion of the operator h. This linearization can be done globally by computing the global sam-
ple covariance and using this for the regression for each ensemble member (Fig. 1).

The linearization can also be done locally (Fig. 2) by computing local estimates of covari-
ance for each ensemble member. This can be done, for instance, by only using a set of nearest
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neighbors (iny, in X, or in some combined distance metric) to compute sample covariance. Figure
2 shows an idealized form of nearest neighbor linearization in which only a single closest ensem-
ble member is used to compute the statistical linearization. Related methods for doing local Gaus-
sian kernel approximations of this type can be found in Silverman (1986) and Bengtsson (2001).
When x is functionally related to y as in Fig. 2, local linearization methods like this can give sig-
nificantly enhanced performance when h is strongly non-linear over the prior ensemble range of y.

If his nonlinear as in the figures, the statistical linearization is only valid locally. To mini-
mize errors due to the linearization, whether global or local linearizations are applied, it is desir-
able that the observation variable incremefyys, should be as small as possible. This is

discussed further in section 4C.
This two step method can be extended trivially to problems with arbitrary numbers of state
variables. Least squares fits can be made to compute the increments for each state vafiable, X

1, ..., n, given the increments in the ensemble members for y. When a global linearization is
applied using a least squares fit, a single Gaussian is assumed to approximate the prior relation of
the variables. The increments; ;, for each ensemble sample of each state variable in terms of

Ay; can be computed independently by regression:

AX | = GX—”Ayi. (6)
" Oyy

Again, local linearizations could be performed using Gaussian (or extended Gaussian) kernel
methods (Tarantola 1987) in which only some subset of local information is used to compute the
covariance from the ensemble sample. In (6), all relevant information about the prior covariance
of the model state variables,needed to compute increments is contained in the correlation of the
individual scalar state variables with the observation variable y.

When the state variable being updated and the observation variable are not functionally
related as is possible in the case of multivariate model state, the use of local linearizations can be

more problematic. Figure 3 shows an example where state varjablbeing updated by an

observation, §. The expected value of the observation is y =h(where % is a second state vari-
able, here moderately correlated with ba this case, the linear regression foiperforms a sta-

tistical linearization in the presence of noise. Using large (global) regressions is useful to filter out
this noise. On the other hand, using local linearizations can help to resolve more of the structure
of h. Applying local regressions that are based on too few ensemble members can lead to disas-
trous over-fitting behavior as demonstrated by the application of an idealized single nearest neigh-
bor linearization in Figure 3. Appropriate trade-offs in choosing local versus global linearizations
are an important part of tuning ensemble filters for improved performance.

3. Relation to Ensemble Kalman Filters

A variety of ensemble Kalman filters have been described in the literature (see for exam-
ple Evensen and van Leeuwen 1996, Keppenne 2000, Mitchell and Houtekamer 2000). Other
closely related methods for doing assimilation have been described by Lermursaix and Robinson
(1999) and Miller et al (1994). This section demonstrates that the two most common of these, the
perturbed observations ensemble Kalman filter (EnKF) and the Ensemble Adjustment Kalman
Filter (EAKF) can be recast in the two step framework outlined in the previous section. At the
heart of these ensemble Kalman filters is the fact that the product of the joint prior Gaussian with
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meanzP, covarianceP and weight w and the Gaussian observation distribution with rg&and
error variancék has covariance

-1 -1
sU= [(ZP) T+ HTRIH] -, (7)
mean
2 = s (EP) TP+ HTRLY, 8)
and an associated relative weight

D = exp{-{(2) ()72 + (v) R - (2) () 21/ 2w, ©)

as in AO1.
The discussion that follows assumes sequential assimilation of scalar observations so that
in (7-9),y° is a vector of length 1 arRlis a 1x1 matrix. Additional simplifications in computing

the product of Gaussians can then be made easily. The order of the prior joint state covaFfance,
is k x k where k = n+1. The updated covariance from (7) can be written

u -1
= [1=(r+o, ) 2h]=" (10)

whereoy i is the prior observation variable error variance (the kth diagonal elem&R},ofis the

observation error variance (the only element of the 1x1 m&yiand ng is the matrix consisting

of =P with all elements except those in the last column set to 0. The last column is the prior cova-
riance of each joint state variable with the observation variable. The change in the covariance due
to the assimilation of a single observation is then

Az = 5'-5P = (r+o, )i =P (11)
Substituting (10) into the expression for the updated mean from (8) gives
_ -1 _
2 = [I =(r+o, 07 =hI=P1(E”) P+ HTRTY. (12)

Noting thatzPH ' R™y° = s H'R™y® an&f =8, = o, 5, , this becomes

i, -1 i, -1 -1 T
2 = [I=(r+o, ) o]+ 1 =(r+ 0, ) 0y JZGH ¥, (13)
An equation for the change in the mean due to assimilating the observation is

T B T o . 1,0 . T
Az =7-2"=(r+0, ) Zo(H ¥ =2°) = (r+0, )T (Y =201 1 Op 1 -, O il

(14)
where the single element of the veagtBis y° and ZE is the prior mean value of the observation

variable.
Finally, in this case the weight D from (9) (a scalar) depends only on the observation and
the observation variable and simplifies to

1l 2 [l
D = expg—(yo—zlf) /2(r + 0y k)SN. (15)
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It is easily verified that computing the impact of the observation on each state variable
independently in (11), (14) and (15) is equivalent to computing the impact on all state variables at
once. This was pointed out, but not rigorously derived in AO1 where assimilations were per-
formed by looking at the impact of an observation on each state variable in turn.

A. Perturbed Observations Ensemble Kalman Filter

In its traditional implementation, the perturbed observation ensemble Kalman filter
(Houtekamer and Mitchell 1998) (EnKF) uses a random number generator to sample the observa-
tional error distribution (specified as part of the observing system) and adds these samples to the

observationy?, to form an ensemble sample of the observation diStI’ibLm%n, ,i=1,...,N.In
most implementations (Houtekamer and Mitchell 1998), the mean of the perturbations is adjusted

to be 0 so that the perturbed observations have gfeather clever methods for perturbing the
observations can preserve other aspects of the distribution (Pham 2001) (the discussion below
applies whether adjustment to the means or other types of perturbation algorithms are applied or

not). =P is computed using sample statistics from the prior joint state ensemble and (7) is com-
puted once to find the value &f'. Eq. (8) is then applied N times wii#? replaced withz” ang®

replaced by®; in the ith application to compute N ensemble memberg'farhis method is

described using more traditional Kalman filter terminology in Houtekamer and Mitchell (1998).
As shown in Burgers et al (1998), computing a random sample of the product as the product of
random samples is a valid Monte Carlo approximation to the nonlinear filtering equation (2). Note
that all ensemble members are assumed equally weighted in both the EnKF and EAKF so that (9)
is not used, however, (9) may be relevant for other ensemble filtering methods (see section 4).

An equivalent two step procedure for the EnKF begins by computing the update incre-
ments for the observation variable, y, which can be done as a scalar problem independent of the
other joint state variables as indicated by (4). Perturbed observations are generated as above and
(7) is used to compute an updated variance for the observation variable; all matrices here are order

1x1 so inverses are simply reciprocals. Eq. (8) is evaluated N times to conthutatly z° andy®

replaced by § and ¥y, where the subscript refers to the value of the ith ensemble member.
Equation (14) applies in this case, since the updated covariance in the full dimension
EnKF is computed by (7), and can be used to compute the increments for all other state variables
given the value ofty; = yY - y*; (which is by definition the kth component of the k-vedn).
All components ofAz; can be computed from (14) as
Az ; = &Ayi . (16)
’ Ok, k

where the first subscript diz indexes which ensemble member and the second indexes which
state variable. This is the regression formula (6) presented in section 2C derived from the assump-
tion of a Gaussian relation between the prior state variables. Implementing the EnKF in this two
step fashion gives results identical (to computational round-off) to previous implementations of
the EnKF but at reduced computational cost.

B. Ensemble Adjustment Kalman Filter / Square Root Filter
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AO01, Bishop et al (2001), and Hamill and Whitaker (2001) have all described another
ensemble filtering method, referred to as the Ensemble Adjustment Kalman Filter (EAKF) by
AO1. Tippett (personal communication, 2001) providing an analysis of the work of these different
authors, points out that the methods are roughly equivalent, and suggests that the name square
root filter (Andrews 1968) may be more appropriate.

The EAKF constructs an updated ensemble with a mean and sample variance that exactly
satisfy (7) and (8). In AO1 this is done by shifting the mean of the ensemble and then adjusting the
spread of the ensemble around the updated mean using a linear operator,

z' = A(Z'-2")+ 2" (17)

where A is a linear operator that satisfids= APAT.

The EAKF can be recast in the two step framework developed in section 2. Again, (4)
implies that the observation variable y can be updated independently of the other joint state vari-
ables. Recalling that y is the kth element of the k-dimensional joint state vector, the updated vari-
ance for y can be written

-1 -1 -1
Ok = [(Op ) +r] (18)
using a scalar application of (7). Applying a scalar version of (8) to compute the updated mean,
yY, the updated value of y can be written
yi = a(yf-y")+y’ (19)
where

o u o, p LV2 o \-1.1/2
a =[og o I =1[r(r+ogy) |

For the change in the mean valuag, = 7 -7 ,equation (14) holds for the EAKF and this
implies that (16) can be used to compute the changes in the state variables by regression from the
change in the mean fory.

It can also be shown that the regression formula can be applied for the adjustment of the
ensemble members around the mean in the EAKF. Eq. (10) can be rewritten by taking the square
root of the operator as

sY = gzPB' (20)
where

B = (I+BZh) (21)

B= (o [Jrr+ofy -1, @2)

If the deviation of the observation variable around the mean is updated as in (19), applying
the linear regression (16) for state variable | gives

and
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-1 -1
Az = 0;,(0y ) AY; = 0j (0 1) (a—-1)y}. (24)
Then,

Ziu,j = ZiF,)j +0?kr}’ip (25)

where

r=(ofy (a-1) = (of k)_l[A/r(r +af k)_l—l] (26)

Writing this in vector form for the updates of all joint state variables gives
Z'= A -2 (27)

| |
where

A=1+T3h. (28)
The matrix A used in the regression update is identical to B in (22) demonstrating that using

regression in the two step framework is identical to the implementation of the EAKF described in
A01.

In summary, the EnKF and EAKF assume a Gaussian relation between the variables in the
joint state space prior distribution. However, these methods do not use (7) and (8) directly to com-
pute an updated distribution. Both methods can be recast in terms of the two step assimilation
context developed in section 2C. First, update increments are computed for each ensemble sample
of the observation variable using scalar versions of the traditional algorithms. Once increments for
ensemble samples of the observation variable have been computed, (16) is used to solve for the
incrementsAz; ;, for each state variable in turn in termg\gf by linear regression.

There are a number of implications about the computational complexity of ensemble (Kal-
man) filtering that can be drawn from (16). First, there is no need to compute the prior covariance
among the model state variables (only the prior cross covariance of each state variable with the
observation variable is needed, along with the variance of the observation variable) or the com-

plete updated covariancg!, (only the updated variance of the observation variable is needed).
Second, once the observational variables are updated, the increments for the state variables
depend only on ratios of prior (co)variances. Any multiplication of the prior covariance matrix by
some type of covariance inflation factor as is done in many existing ensemble Kalman filter
implementations (Anderson and Anderson 1999, Whitaker and Hamill 2001) does not impact the
solution to (16). The impacts of covariance inflation are still felt in the first step in which the
increments of the observational variable are computed. Note that many types of covariance infla-
tion directly increase the spread of the joint prior distribution.

C. Degenerate prior covariance

A potential complication occurs EP is degenerate so that its inverse is not defined. There

are several reasons wh{ might be degenerate. First, it is possible that the joint state vector is of
order greater than the size of the space that it spans. The most obvious instance occurs when an
observation is a linear function of the prior model state variables (for instance if a state variable is
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observed directly). Second, details of the sample statistics of the prior ensemble could lead to

degeneracy. For instance, if the ensemble is smaller than the size of the joint staf® space
puted from the sample statistics must be degenerate. Third, details of the prediction model could
lead to states that are confined to some sub-manifold of the model state space.

The two-step procedures for the EnKF and EAKF continue to be equivalent to the tradi-

tional implementations even3P is degenerate. In this case, (7) through (9) must be modified to
replace the inverses with pseudo-inversesl'ebe am x k orthogonal matrix whose rows are

the set of left singular vectors Bf corresponding to non-zero singular valugss(the rank of

>P). Applying U™ to a vector in the original space gives the projection of that vector on the range

of =P. The projection of the covariance on this spa¢¢'EPU. The probability density of the
prior distribution outside of this subspace is zero, so the updated distribution andhemcst
lie in this subspace. Note that by definition of the SVD, the projection of the covariance on the

range ofsP projected back into the original spacé&id "sPUUT = 5P.

Next, define am x n orthogonal matrixBT that performs a change of basis in the reduced
SVD subspace. Let thgx k matrix C" = BTUT be defined so that the last row®f is the projec-
tion of the observation variable, =y, on the range ofP; the last column o€Tis[0,0,...0y]".

CT exists as long as the observation vector does not lie in the null spafekmft this must be the
case for (2) to have a relevant solution. If the observation vector did lie entirely in the null space,

thenp(y® | zZ°) would be 0 with probability 1 and the result of (2) would be a delta function indi-
cating a deterministic solution (and probably an improperly defined problem, Tarantola (1987)).

Within the subspace with the basis given by the rowd’othe projection of the
prior covariance has an inverse and (7) through (9) can be applied. The results can then be pro-
jected back to the original space:

1 4
sY = c[(c'zPc) +c"H'RMHC] C. (29)

In this subspace, defie" = CTsYC, ’P =CT3PC, 7, = C'z (ann-vector), y; = Yy is the last

elementof 7, ando'y |, = wzoﬁ . is the prior variance of y’Also note thaCTHTRHC is an

x n matrix with all elements 0 except the last column of the last row whictidisnp?r L. Finally,

defineR’ ! as the 1 x 1 matrix with only elementirandH’ as then-vector [0, O, ..., 0, 1].
In the subspace, (10) through (16) hold for the primed quantities just defined. In particular,
(16) in vector form gives

P s T
Az, = (op ) ZP[0,0,..,0,Ay] . (30)
Converting this back to the original subspace gives
Az = CAZ, = (o ) CZP[0,0, ..., 0, yAy,
Using the fact thaE'C =1,

_ -1
Az = ¢ 3(oh ) c=PC'Cl0,0, ..., 0, WAy,
which is a vector form of (16).

1. (31)

1" = (a0 0" ="10,0,...,0,ay,]"(32)
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This demonstrates that doing the two step procedure in the original space, X\isrdiégener-
ate, gives results corresponding to those given by the previously documented versions of the
EnKF and EAKF.

4. Additional Methods for updating the observational variable ensembles

Section 2 developed a framework in which state variables in ensemble filters can be
updated once increments to the observational variables have been computed. Section 3 demon-
strated that the EnKF and EAKF could be formulated in this framework. In this section, some
additional methods for updating the observational variable are discussed. Independence of obser-
vational errors continues to be assumed throughout this section so that observations can be pro-
cessed sequentially. Once update increments for the observation variable are computed by one of
the following methods, the rest of the joint state variables can be updated by linear regression
using (16).

A. A kernel filter

If the prior distribution of the observation variable may have significant non-Gaussian structure, a
kernel method similar to the one employed in Anderson and Anderson (1999) may be useful for
computing the update increments. One simple example of kernel methods is the Fukunaga method
(Silverman 1986) applied in one dimension. In this algorithm, the prior distribution is represented
as a sum of Gaussians with identical variance but different means. The means are the individual
prior ensemble samples and the variance is the prior sample variance multiplied by a scaling fac-
tor, n. The prior distribution is then
N

p(Y") = $ Nz

i=1
where N(a, b) is a Gaussian with mean a and variance b.

The product of a prior expressed as a sum of Gaussians and a Gaussian observational dis-
tribution is equal to the sum of the products of the individual prior Gaussians and the observa-
tional Gaussian. The variance of all Gaussians summed in the product is identical in this case and
can be computed by a single scalar application of (7). The means will all be different and can be
computed by N scalar applications of (12). In the most naive application of this method, an
updated ensemble can be generated from this continuous representation by randomly sampling
the sum of Gaussians as in Anderson and Anderson (1999).

This kernel method can be extended in a number of ways by allowing more general ker-
nels. For instance, kernels with different means and different variances can be used following a
variety of techniques like the class of nearest neighbor methods (Silverman 1986, Bengtsson
2001). In addition, kernels from the class of ‘generalized’ Gaussians as described in Tarantola
(1987) can lead to a variety of related kernel algorithms.

B. Quadrature product methods
Update methods that are based directly on ‘quadrature’ solutions to (4) can also be used to

find increments for observation variables. One implementation of such a method could begin by
computing a continuous approximation to the prior distribution from the ensemble sample; again,
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kernel methods are an example. Quadrature methods can then be used to divide the real line into a
set of intervals over which the product in the numerator of (4) is computed to approximate the
updated distribution. An appropriate method can then be used to sample this updated distribution
to generate new ensemble methods.

C. General requirements for an observation variable update

Several characteristics may be important for algorithms used to update the observation
variables. First, low quality observations should have small impacts on the ensemble. For atmo-
spheric and oceanic models, the prior distributions may be sampling model ‘attractors’ that have a
great deal of structure. Allowing low impact observations to change the ensembles has potential to
destroy valuable information. Pure resampling algorithms would be an example of an undesirable
method. In this case, the prior ensemble would be converted to a continuous representation which
would then be only subtly modified by a low information observation. This updated continuous
distribution would then be resampled to generate an ensemble, leading to possibly large incre-
ments to ensemble members. The ensemble kernel filter as described above suffers from this defi-
ciency and generally produces assimilations with larger ensemble mean error than do the EnKF
and EAKF. This is despite the fact that in many instances it produces more accurate samples of
the updated observation variable distribution when the prior is significantly non-Gaussian. Modi-
fications to the kernel filter that limit the impact of low information observations are required to
make this method more generally useful.

For related reasons, it is desirable to limit the size of the increments for observation vari-
ables as noted in section 2. Since the regression used to update the state variables is a statistical
linearization, it is likely to be an increasingly poor approximation as the increments increase. For
instance, the updated mean and covariance of the observation variable for the EnKF would be the

same if the pairing between the updatqfll, , and pzfg))r, , Observational variable ensemble mem-

bers was changed before the computation of update incremiepts, . In some applications, the

performance of the EnKF can be dramatically improved by pairing the updated observational
variable ensemble members with the prior members in order to reduce the value of the update
increments. The most obvious way to do this is to sort the prior and updated observational vari-
able ensemble members and to associate the nth sorted updated ensemble member with the nth
sorted prior ensemble member. Doing this reduces much of the difference between the EnKF and
EAKF reported in AO1. Doing ordered pairing also significantly improves the performance of ker-
nel filter algorithms (section 4A) by reducing the size of increments.

5. Limiting the impact of observations

Section (2C) has shown an efficient method for allowing an observation to impact individ-
ual state variables in an ensemble filter. The appropriate solution might appear to be allowing each
observation to impact each state variable. However, when the size of affordable ensembles, N, is
small, or when N is small compared to the number of observations or the number of state vari-
ables, there are several good reasons to limit the impact of an observation on some state variables.

One reason for limiting the impact of observations is simply to reduce computational cost.

By limiting the impact of an individual observation to a subset of state variables with which it is
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expected to be closely related, the number of cross covariance terms that need to be computed can
be greatly reduced.

Hamill et al (2001) have discussed related problems that occur when spuriously large prior
correlation magnitudes between an observation variable and state variable occur due to sampling
errors. They point out that if there are a large number of observations that are expected to be
weakly correlated with a state variable, the impact of spurious correlations may mask the impact
of a smaller set of observations with relatively large expected correlation magnitude. This is par-
ticularly problematic if the number of observations is large and the ensemble size is small. Hamill
et al develop their discussion in a context where there is a natural definition of distance (physical
distance in their case) between observations and state variables and suggest reducing the impact
of physically distant observations on a state variable by reducing the sample correlation cross
covariance between observations and state variables as the distance between them increases. Their
results also suggest that it may be difficult to apply ensemble filters with small sample sizes in
systems where a state variable is expected to be weakly related to a large number of observations,
but strongly related to no observations. For instance, in the case of models of a fluid on the sphere,
if the state variables are some sort of basis functions with global support, and observations are pri-
marily of some quantity at a point, one might expect difficulties with spurious correlations for
small ensembles.

A final reason for limiting the impact of observations is applicable when the computation-
ally affordable ensemble size is small compared to the number of state variables. As pointed out

in section 3C, in such cases the prior covariance mattjxs singular and the increment in the
model state will be confined to the rang&BfIf the prior state estimate has errors that project

onto the null space &P, these cannot be corrected. This problem can be addressed by allowing
different weighted subsets of observations to impact different state variables. The result is that the
size of the subspace of the state space over which possible updates occur can be greatly increased;
if each state variable sees a different weighted subset of observations, the space spanned by the
possible updates may be the complete state space.

This becomes an even more serious problem in atmospheric and oceanic data assimilation
when the assimilating model is imperfect, especially when observations of the physical system are
being assimilated for prediction purposes. In such cases, the assimilating model may evolve on a
sub-manifold of the state space in a fashion that is not consistent with the physical system from
which observations are being taken.

Methods for reducing the impact of observations as a function of distance have been used
in a variety of data assimilation methods (Gaspari and Cohn 1999) including ensemble filters
(Houtekamer and Mitchell 2001, Hamill et al 2001). These studies have indicated the importance
of smoothly reducing the influence of observations as a function of (physical) distance to avoid
having large differences in the impact of a set of observations on pairs of state variables that are
closely related in the prior distribution. Gaspari and Cohn (1999) develop a number of functions
with compact support that can be used to reduce the cross covariance of prior state and observa-
tion variables in ensemble filters. The compact support of these functions leads to computational
efficiency since observations beyond a certain distance do not impact a given state variable.

Houtekamer and Mitchell (2001) applied distance dependent covariances in a type of
ensembile filter. In the context developed here, their use of the Schur product can be replaced by a
multiplication of the prior joint covariance by a function of the position of the observation and
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state variable. Identical results can be obtained in the two step context developed here at a much
reduced cost.

6. Conclusions

A local least squares framework for ensemble filtering has been derived leading to a two-step
ensemble filtering update procedure when a new observation becomes available. The first step is
to compute update increments for each ensemble member to a prior estimate of the value of the
observation. This can be done using a variety of algorithms including the perturbed observation
ensemble Kalman filter and the ensemble adjustment Kalman filter. Other update methods, for
instance a kernel filter, extend beyond the Kalman filter context and can be referred to more gen-
erally as ensembile filters.

The second step is to compute increments for each ensemble member of the prior estimate
for each state variable in turn. This is done by using the prior ensemble sample to do a linear
regression of each state variable in turn on the observation variable. The increments for a given
state variable are computed by multiplying the corresponding observation variable increment by
the prior covariance of the state and observation variable and dividing by the prior variance of the
observation variable.

Deriving a class of ensemble filters in this two step context has a number of advantages.
First, it is computationally more efficient than previous descriptions of ensemble Kalman filter
algorithms in the literature. The cost is expected to be dominated by the computation of the prior
sample cross covariance of the observation and state variables and the variance of the observation
variables. A second advantage is that much more elaborate and expensive ensemble update meth-
ods can be applied because they need only be applied in a scalar fashion to the observation vari-
ables. A final advantage is that it is easier to understand differences between various filtering
algorithms. Differences need only be explored in a scalar context making the relative features of,
for instance, the EnKF and EAKF much easier to understand.

By lowering the cost and opening up a variety of new filter update algorithms, it is hoped
that this local least squares framework can accelerate the development of ensemble filtering algo-
rithms that are best suited for applications such as numerical weather prediction and ocean state
estimation.
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Figure Captions

1. An idealized representation showing the relation between update increments for a state vari-
able, x, and an observation variable, y, for a five member ensemble represented by asterisks. The

projection of the ensemble on the x and y axes is represented by ‘+” and the obsenisarpy

resented by ‘X’. In this case, y is functionally related to x by h. The grey dashed line shows a glo-
bal least squares fit to the ensemble members. Update increments for ensemble members 1 and 4
for y are shown along with corresponding increments for the ensemble as a whole (thin vectors
parallel to least squares fit) and for the x ensemble.
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2. As in Figure 1 but showing the application of local least squares fits, in this case using only the
nearest neighbor in y, to compute the updates for x given the updates for y. The local updates for
the first and fourth ensemble members are shown by the black vectors.

3.As in Figure 1, but now y = gk where x is a second state variable that is moderately corre-
lated with x. The thin dashed vector demonstrates the hazard of using local least squares fits
when the observation variable y and the state varigbdeexnot functionally related.
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1. An idealized representation showing the relation between update increments for a state vari-
able, x, and an observation variable, y, for a five member ensemble represented by asterisks. The
projection of the ensemble on the x and y axes is represented by ‘+” and the obsenisarpy

resented by ‘X’. In this case, y is functionally related to x by h. The grey dashed line shows a glo-
bal least squares fit to the ensemble members. Update increments for ensemble members 1 and 4
for y are shown along with corresponding increments for the ensemble as a whole (thin vectors
parallel to least squares fit) and for the x ensemble.
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2. As in Figure 1 but showing the application of local least squares fits, in this case using only the
nearest neighbor in y, to compute the updates for x given the updates for y. The local updates for
the first and fourth ensemble members are shown by the black vectors.
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Yy
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3. As in Figure 1, but now y = hif) where % is a second state variable that is moderately corre-
lated with x. The thin dashed vector demonstrates the hazard of using local least squares fits
when the observation variable y and the state varigbdeexnot functionally related.
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